↳ ITRS
↳ ITRStoIDPProof
z
f(TRUE, x) → ft(TRUE, x, y)
ft(TRUE, x, y) → ft(>=@z(y, x), +@z(x, 1@z), y)
f(TRUE, x0)
ft(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
f(TRUE, x) → ft(TRUE, x, y)
ft(TRUE, x, y) → ft(>=@z(y, x), +@z(x, 1@z), y)
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1]))
(1) -> (1), if ((+@z(x[1], 1@z) →* x[1]a)∧(y[1] →* y[1]a)∧(>=@z(y[1], x[1]) →* TRUE))
f(TRUE, x0)
ft(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1]))
(1) -> (1), if ((+@z(x[1], 1@z) →* x[1]a)∧(y[1] →* y[1]a)∧(>=@z(y[1], x[1]) →* TRUE))
f(TRUE, x0)
ft(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(1) -> (1), if ((+@z(x[1], 1@z) →* x[1]a)∧(y[1] →* y[1]a)∧(>=@z(y[1], x[1]) →* TRUE))
f(TRUE, x0)
ft(TRUE, x0, x1)
(1) (+@z(x[1], 1@z)=x[1]1∧y[1]1=y[1]2∧+@z(x[1]1, 1@z)=x[1]2∧y[1]=y[1]1∧>=@z(y[1], x[1])=TRUE∧>=@z(y[1]1, x[1]1)=TRUE ⇒ FT(TRUE, x[1]1, y[1]1)≥NonInfC∧FT(TRUE, x[1]1, y[1]1)≥FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)∧(UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥))
(2) (>=@z(y[1], x[1])=TRUE∧>=@z(y[1], +@z(x[1], 1@z))=TRUE ⇒ FT(TRUE, +@z(x[1], 1@z), y[1])≥NonInfC∧FT(TRUE, +@z(x[1], 1@z), y[1])≥FT(>=@z(y[1], +@z(x[1], 1@z)), +@z(+@z(x[1], 1@z), 1@z), y[1])∧(UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥))
(3) (y[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥)∧-2 + (-1)Bound + y[1] + (-1)x[1] ≥ 0∧0 ≥ 0)
(4) (y[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥)∧-2 + (-1)Bound + y[1] + (-1)x[1] ≥ 0∧0 ≥ 0)
(5) (-1 + y[1] + (-1)x[1] ≥ 0∧y[1] + (-1)x[1] ≥ 0 ⇒ 0 ≥ 0∧-2 + (-1)Bound + y[1] + (-1)x[1] ≥ 0∧(UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥))
(6) (-1 + x[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧-2 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥))
(7) (x[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥))
(8) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥))
(9) (x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0∧(UIncreasing(FT(>=@z(y[1]1, x[1]1), +@z(x[1]1, 1@z), y[1]1)), ≥))
POL(>=@z(x1, x2)) = -1
POL(FT(x1, x2, x3)) = -1 + x3 + (-1)x2
POL(TRUE) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
FT(TRUE, x[1], y[1]) → FT(>=@z(y[1], x[1]), +@z(x[1], 1@z), y[1])
FT(TRUE, x[1], y[1]) → FT(>=@z(y[1], x[1]), +@z(x[1], 1@z), y[1])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
f(TRUE, x0)
ft(TRUE, x0, x1)